Dual Nature of Radiation and Matter

- 1. Assertion (A): Two photons having equal wavelengths have equal linear momentum. Reason (R): When monocloromatic light shows its photon character, each photon has a linear momentum $p = \frac{h}{\lambda}$.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **2. Assertion (A):** If the accelerating potential of a X-Ray tube is increased then the characteristic wavelength decreases.

Reason (R): The cut-off wavelength for

a X-ray tube is given by $\lambda_{min} = \frac{hc}{eV},$

where V is accelerating potential.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **3.** A photon and an electron both have energy 50 eV.

Assertion (A): Both have different wavelengths.

Reason (R): Wavelength depends on energy and not on mass.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

- 4. Assertion (A): Wave velocity is equal to group velocity in a non-dispersive medium.
 Reason (R): A non dispersive medium is one in which the wave velocity is frequency dependent.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **5. Assertion (A):** In photoelectric effect, cathode or emitter plate is usually coated with barium oxide, barium sulphide or strontium oxide.

Reason (R): Coating prevents cathode from erosion.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 6. Assertion (A): A particle at rest breaks into two particles of different masses. They fly off in different directions. Their de Broglie wavelengths will be different.

Reason (R): Their speed will be different. (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)

- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **7. Assertion (A):** Photo cell is also called electric eye.

Reason (R): Photo cell can see the things placed in front of it.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

8. Assertion (A): In photon-particle collision the total energy and total momentum are conserved.

Reason (R): The number of photons are conserved in a collision.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- Assertion (A): Cut-off wavelength of xray is independent of type of target metal

Reason (R): Wavelength of K_{α} x-ray depends upon type of target metal.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **10. Assertion (A):** The stopping potential increases, when frequency of incident rays are increased.

Reason (R): Stopping potential is directly proportional to the frequency of incident radiation.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 11. Assertion (A): A metallic surface is irradiated by monochromatic light of frequency $\upsilon > \upsilon_0$ (the threshold frequency). The maximum kinetic energy and stopping potential are K_{max} and V_s respectively. If the frequency of incident on the surface is doubled, both K_{max} & V_s are more than doubled.

Reason (R): The maximum kinetic energy and the stopping potential of photoelectrons emitted from a surface are linearly dependent on the frequency of incident light.

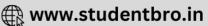
- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

12. Assertion (A): When ultraviolet light incident on a photo cell, its stopping potential is VS and the maximum kinetic energy of photoelectrons is K_{max}. When the ultraviolet light is replaced by X-rays, both V_S and K_{max} increases

Reason (R): Photo electrons are emitted with speed ranging from zero to a maximum value because of the range of frequencies present in the incident light. (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)

- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 13. Assertion (A): By de-Broglie hypothesis, $p = h/\lambda$ for both the electron and the photon.

Reason (R): If an electron has the same wavelength as a photon, they have the same energy.


- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **14. Assertion (A):** Charge of a photon is zero. **Reason (R):** Rest mass of a photon is zero.
 - (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
 - (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
 - (3) (A) is true but (R) is false
 - (4) Both (A) and (R) are false
- **15. Assertion (A):** The relative velocity of two photons travelling in opposite directions is c.

Reason (R): The rest mass of a photon is zero.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

16. Assertion (A): In the process of photo electric emission, all the emitted photoelectrons have same KE.

Reason (R): According to Einstein's photo electric equation KE= $h\upsilon - \phi$.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **17. Assertion (A):** In photo electric effect, photo electrons come out from inner orbits of atom.

Reason (R): Free electrons of the metal can not absorb energy of a photon.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- 18. Assertion (A): In photoelectric effect, on increasing the intensity of light, both the number of electrons emitted and kinetic energy of each of them get increased but photoelectric current remains unchanged.

Reason (R): The photoelectric current depends only on wavelength of light.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **19. Assertion (A):** The smaller the wavelength of a photon, the more energy it has.

Reason (R): The smaller the wavelength of a photon, the less momentum it has.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

20. Assertion (A): An electron microscope is based on de Broglie's hypothesis of matter waves.

Reason (R): Higher the accelerating potential, smaller is the de Broglie wavelength of the electron.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **21. Assertion (A):** Photons do not carry momentum

Reason (R): A photon is a material particle.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **22. Assertion (A):** Increase in intensity of light increases the kinetic energy of photoelectrons.

Reason (R): At stopping potential, no current flows in the circuit.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **23. Assertion (A):** Work function of a metal increases with increase in intensity of incident light.

Reason (R): Maximum kinetic energy of ejected photoelectrons depends upon the intensity of incident light.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

24. Assertion (A): Kinetic energy of photoelectrons emitted by a photosensitive surface depends upon the intensity of incident photon.

Reason (R): The ejection of electrons from metallic surface is possible with frequency of incident photon below the threshold frequency.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **25. Assertion (A):** Photoelectrons have a range of kinetic energy.

Reason (R): The work function varies as a function of depth from the surface.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **26. Assertion (A):** Photoelectric effect demonstrates the wave nature of light.

Reason (R): The number of photoelectrons is proportional to the frequency of light.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

27. Assertion (A): On increasing the frequency of incident light, the photoelectric current increases.

Reason (R): Photoelectric current depends upon the wavelength of incident light.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **28. Assertion (A):** In photoelectric effect, the number of photoelectrons emitted is always equal to number of photons incident.

Reason (R): All the photons falling on the surface will eject photoelectrons.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false
- **29. Assertion (A):** Electron from metal surface ejects only when light of particular wavelength will fall on surface.

Reason (R): Light shows wave nature.

- (1) Both (A) & (R) are true and the (R) is the correct explanation of the (A)
- (2) Both (A) & (R) are true but the (R) is not the correct explanation of the (A)
- (3) (A) is true but (R) is false
- (4) Both (A) and (R) are false

ANSWER KEY																				
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Ans.	4	4	3	3	4	4	3	3	2	3	2	3	3	1	2	4	4	4	3	2
Que.	21	22	23	24	25	26	27	28	29											
Ans.	4	4	4	4	3	4	4	4	4											

